# In-Use Off-road Diesel Vehicle Regulation Individual Fleet Cost Analysis



July 16, 2007 Sacramento, California

Heavy-Duty Diesel In-Use Strategies Branch

California Environmental Protection Agency



Air Resources Board

1

#### Outline

- Proposed regulation overview
- Fleet meetings
- Fleet compliance options
- · Cash flow analysis method
- Findings



2

## Review of Proposed Regulation





3

# **Regulation Overview**

- Applies to off-road vehicle engines over 25 hp
- Beginning in 2009
  - Labeling and annual reporting
  - Idling limits
  - Limits on adding dirty vehicles to fleets
- Control requirements begin
  - 2010 for large fleets
  - 2013 for medium fleets
  - 2015 for small fleets



#### Two Options to Comply

- Meet fleet emission targets by any method or
- Demonstrate progress in reducing emissions
  - Called Best Available Control Technology (BACT) requirements
  - "Safety valve" for fleets that cannot meet targets

5

# BACT Requirements "A Safety Valve"

- Fleets never required to do more than BACT requirements
- Apply PM retrofits to meet PM requirements
  - 20% of hp per year
  - No action required if not available
- Turn over engines to meet NOx requirements
  - 8-10% of hp per year
  - Engine turnover reduced with NOx retrofits
- Once fleet averages are met, fleets will do less

Compliance Actions

- Install NOx or PM exhaust retrofits
- Buy cleaner new or used vehicles
- Install cleaner engines (repower)
- · Retire dirty vehicles





6

## Requirements Vary by Fleet Size

| Fleet Size<br>Category | Description                                                                                                               | Dates and<br>Requirement |
|------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Small                  | Small business less than 1,500 hp or<br>Municipality less than 1,500 hp or<br>Municipality fleet in low population county | 2015-2025<br>PM only     |
| Medium*                | Municipality with 1,501 to 5,000 hp or<br>Business less than 5,000 hp (not "Small")                                       | 2013-2020<br>PM and NOx  |
| Large*                 | Fleets with more than 5,000 hp                                                                                            | 2010-2020<br>PM and NOx  |

<sup>\*</sup> Same requirements for large and medium fleets, only initial compliance date varies. 8

# Annual Compliance Process Large and Medium Fleets Either meet NOx target or do 8% or 10% turn over Either meet PM target or do 20% retrofits Done for year

# **Special Provisions**

- Exemptions or compliance extensions
  - Low-use vehicles
  - Vehicles in attainment areas
  - Manufacturer delays
- No retrofit requirements
  - Engines in vehicles less than 5 years old
  - No retrofit available
  - Retrofit not safe
- No turnover requirements
  - Small fleet
  - Used vehicle and repower not available
  - Less than 10 years old, or retrofit in past 6 years

10

## Regulation Provides Credit

- NOx retrofits in lieu of BACT turnover
- Early repowers and turnover
- Electric and alternative fuel vehicles
  - Double credit for turnover to electric vehicles
- Double credit for early PM retrofits



11

## Meetings with Fleets



#### Goals

- Better understand fleet operations and most cost effective compliance strategies
- Determine regulation's impact on bottom line
  - Cash flow, income, debt load
- Discuss suggestions for improving regulation

13

# Fleets Evaluated After May Board Hearing

- Company Types
  - Equipment rental
  - Grading
  - General contracting
  - Underground
  - Mining
- Locations
  - 2 Northern California
  - 1 Central California
  - 6 Southern California

Summary of Meetings

- Most fleets' own cost estimates agreed well with ARB staff estimates
- Evaluated early compliance options
- Some misunderstandings of requirements
- Staff detailed cash flow analyses being reviewed by some fleets
- Most fleets did not share financial information

14

#### **Fleet Characteristics**

| Average Vehicle<br>Age | Number of<br>Vehicles | Total hp |
|------------------------|-----------------------|----------|
| 6.3                    | 156                   | 81,000   |
| 7.1                    | 321                   | 99,000   |
| 5.2                    | 11                    | 3,000    |
| 8.1                    | 127                   | 20,000   |
| 9.8                    | 112                   | 41,000   |
| 10.6                   | 19                    | 8,000    |
| 12.0                   | 49                    | 12,000   |
| 12.9                   | 235                   | 45,000   |
| 18.9                   | 102                   | 28,000   |

16

#### Key Issues

- Concerns about PM retrofit technology
  - Costs of existing systems
  - Uncertainty of available options
  - Technology, installation, and reliability
- Comparison of costs to baseline costs (without regulation)
- · Ability to pass on costs

17

#### Level 3 Diesel Particulate Filters Currently Verified for Off-road Use

| Product                           | Applicability                                                          |
|-----------------------------------|------------------------------------------------------------------------|
| Cleaire Horizon                   | Most Tier 1 and higher off-<br>road engines                            |
| Huss Umwelttechnik FS_MK          | Most on-road and off-road<br>diesel engines through 2007<br>model year |
| Engine Control System Combifilter | 1996-2004 off-road engines                                             |

Note: 22 Level 2 and Level 3 systems verified for other applications

10

### Retrofit Technology

- Filter substrate traps PM
- Key differences in regeneration method
- Passive systems
  - Needs higher exhaust temperatures
  - Automatic regeneration while operating
  - Lower cost option
- Active systems
  - Exhaust temperature/duty cycle unimportant
  - Uses fuel or electricity to generate heat
  - Regenerates with engine off or while running



18

#### Other PM Retrofit Systems

- Several off-road demonstrations in progress
- Off-road showcase applications from dozens of retrofit suppliers
- Every new on-road engine sold in US has particulate filter
  - 780,000 vehicles per year
  - Estimated price increase with filter about \$7,000
- · Over 2,000 filters installed on trash trucks
  - Duty cycle similar to off-road (350 hp engines)
  - Most are passive systems and cost less than \$10,000
- Public fleets milestone at end of year
  - Several hundred expected to be installed







# Comparison to Baseline

- Costs from regulatory requirements must be compared to costs without regulation
- Normal turnover rate determines baseline
  - Establishes cost for turnover without regulation

| Turnover<br>Rate | Equivalent to keeping vehicles for |  |
|------------------|------------------------------------|--|
| 1%               | 100 years                          |  |
| 2%               | 50 years                           |  |
| 4%               | 25 years                           |  |
| 5%               | 20 years                           |  |

# Ability to Pass on Costs

- All fleets subject to regulation
- Most agree they will be able to pass on some costs
  - Competition with small and medium fleets an issue
- Newest fleets will also face higher costs with Tier 4 engines
  - New vehicles will have filters starting in 2012

25

#### Approach to Analysis

- · Capital costs with regulation vs costs without
  - Evaluated variety of compliance strategies
  - Tailored compliance strategies for each company
- Used same prices/costs from staff report
- All costs in 2006 dollars
- · Did not model growth
  - Growth with newer vehicles improves fleet averages
- Detailed cash flow analysis

27

## Cash Flow Analysis Method





26

#### Incremental Cash Flow Analysis

- · Loan interest rate and period
- · Age and number of vehicles purchased
- Income and property tax
- Depreciation
  - Taxes and book value
- · Revenue increases with newer vehicles
  - Productivity, rates, fewer service calls
- Lower repair costs
- Fuel economy improvements

#### PM Exhaust Retrofit Costs

Costs Used in Staff Report (Active and Passive DPF)

| Engine Size         | Total Price |
|---------------------|-------------|
| Less than 50 hp     | \$8,000     |
| 50 to 175 hp        | \$12,000    |
| 175 to 300 hp       | \$18,000    |
| Greater than 300 hp | \$30,000    |

#### Actual Price Quotes for Huss Systems (Active DPF)

| Engine Size     | Number of Quotes | Median Price |  |
|-----------------|------------------|--------------|--|
| Less than 50 hp | 0                | NA           |  |
| 50 to 175 hp    | 94               | \$13,928     |  |
| 175 to 390 hp   | 15               | \$19,512     |  |
| 394 hp          | 1                | \$48,858     |  |

20

# Repower Costs

- Tier 0 to Tier 2 or 3
  - \$270/hp
- Tier 0 to Tier 1 (for early credit)
  - \$135/hp

30

#### Fleet Analysis



31

# Fleet A – Background Information

- •Rental Company
- •Average age, 12.9
- •Turnover vehicles after 25 years (4%)
- Buy 2 to 5 year old vehicles
- Dozers, rollers, excavators, scrapers
- •Revenue about \$10,000,000







#### Fleet A – Compliance Strategy Evaluated Spread Out Costs with Early Actions

- Early credit
  - Repower 7% of hp to Tier 1 and install PM retrofits on same engines
- Turnover oldest vehicles with 6 year old used vehicles
- · Install PM retrofits on dirtier engines first



#### Fleet A – Incremental Capital Costs Lower Cost Option

|      | Incremental Capital Expense |             |             | Costs<br>Attributed to |
|------|-----------------------------|-------------|-------------|------------------------|
| Year | Turnover                    | Repowers    | VDECS       | Regulation             |
| 2008 | \$0                         | (\$284,807) | (\$163,265) | (\$448,073)            |
| 2009 | \$0                         | \$0         | \$0         | \$0                    |
| 2010 | \$687,500                   | \$0         | (\$253,392) | \$434,107              |
| 2011 | (\$596,076)                 | \$0         | (\$449,744) | (\$1,045,820)          |
| 2012 | (\$112,329)                 | \$0         | (\$219,387) | (\$331,717)            |
| 2013 | (\$363,176)                 | \$0         | \$0         | (\$363,176)            |
| 2014 | (\$141,348)                 | \$0         | (\$146,197) | (\$287,545)            |
| 2015 | (\$195,162)                 | \$0         | (\$38,677)  | (\$233,838)            |
| 2016 | \$46,943                    | \$0         | (\$438,334) | (\$391,391)            |
| 2017 | (\$686,836)                 | \$0         | (\$70,162)  | (\$756,997)            |
| 2018 | (\$357,090)                 | \$0         | (\$73,503)  | (\$430,592)            |
| 2019 | (\$342,885)                 | \$0         | (\$38,183)  | (\$381,068)            |
| 2020 | (\$351,117)                 | \$0         | \$0         | (\$351,117)            |

37

39

# Fleet A - Cash Flow Analysis 1% Increase in Revenue

| Calendar<br>Year | Cash Flow   | Income      | Cumulative Debt<br>Remaining |
|------------------|-------------|-------------|------------------------------|
| 2008             | (\$93,999)  | (\$48,259)  | (\$372,393)                  |
| 2009             | (\$96,727)  | (\$44,560)  | (\$290,359)                  |
| 2010             | (\$122,289) | (\$116,753) | \$205,210                    |
| 2011             | (\$170,799) | (\$67,219)  | (\$611,383)                  |
| 2012             | \$13,303    | \$156,279   | (\$652,362)                  |
| 2013             | \$155,384   | \$232,508   | (\$766,440)                  |
| 2014             | \$181,373   | \$295,071   | (\$749,144)                  |
| 2015             | \$191,219   | \$464,864   | (\$502,604)                  |
| 2016             | \$381,292   | \$470,337   | (\$572,123)                  |
| 2017             | \$341,905   | \$451,420   | (\$936,314)                  |
| 2018             | \$371,693   | \$466,398   | (\$960,204)                  |
| 2019             | \$347,618   | \$442,830   | (\$908,657)                  |
| 2020             | \$317,508   | \$426,001   | (\$790,471)                  |
| 2021             | \$237,770   | \$296,115   | (\$426,316)                  |

38



Tier 2

#### Fleet B - Background

- Grading (Public/Residential)
- Average age, 9.5 years
- Turnover vehicles after 50 years (2%)
- Replace with some new, some used
- Scrapers, excavators, tractors/loaders/backhoes, crawler tractors
- Early Action: Repowered 30% of fleet













#### Cash Flow Results and Conclusions

- Early actions provide opportunity to lower costs in early years
- Regulation provides flexibility for fleet to tailor to their needs
- Replacement cost of oldest vehicles often offset by other factors
  - Depreciation
  - Lower repair costs
  - Increased reliability/productivity/revenue
- Financing spreads out costs
- Capital costs alone not sufficient to determine impact on income and revenue